(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0') → 0'
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0') → 0'
Types:
f :: s:0' → a → a → f
s :: s:0' → s:0'
id :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
hole_a3_0 :: a
gen_s:0'4_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
idThey will be analysed ascendingly in the following order:
id < f
(6) Obligation:
TRS:
Rules:
f(
s(
s(
s(
s(
s(
s(
s(
s(
x)))))))),
y,
y) →
f(
id(
s(
s(
s(
s(
s(
s(
s(
s(
x))))))))),
y,
y)
id(
s(
x)) →
s(
id(
x))
id(
0') →
0'Types:
f :: s:0' → a → a → f
s :: s:0' → s:0'
id :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
hole_a3_0 :: a
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
id, f
They will be analysed ascendingly in the following order:
id < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
id(
gen_s:0'4_0(
n6_0)) →
gen_s:0'4_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
id(gen_s:0'4_0(0)) →RΩ(1)
0'
Induction Step:
id(gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
s(id(gen_s:0'4_0(n6_0))) →IH
s(gen_s:0'4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
s(
s(
s(
s(
s(
s(
s(
s(
x)))))))),
y,
y) →
f(
id(
s(
s(
s(
s(
s(
s(
s(
s(
x))))))))),
y,
y)
id(
s(
x)) →
s(
id(
x))
id(
0') →
0'Types:
f :: s:0' → a → a → f
s :: s:0' → s:0'
id :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
hole_a3_0 :: a
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
id(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
TRS:
Rules:
f(
s(
s(
s(
s(
s(
s(
s(
s(
x)))))))),
y,
y) →
f(
id(
s(
s(
s(
s(
s(
s(
s(
s(
x))))))))),
y,
y)
id(
s(
x)) →
s(
id(
x))
id(
0') →
0'Types:
f :: s:0' → a → a → f
s :: s:0' → s:0'
id :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
hole_a3_0 :: a
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
id(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
id(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
s(
s(
s(
s(
s(
s(
s(
s(
x)))))))),
y,
y) →
f(
id(
s(
s(
s(
s(
s(
s(
s(
s(
x))))))))),
y,
y)
id(
s(
x)) →
s(
id(
x))
id(
0') →
0'Types:
f :: s:0' → a → a → f
s :: s:0' → s:0'
id :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
hole_a3_0 :: a
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
id(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
id(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)